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Abstract 
 

 
In this working paper, we present, for the first Fme, a quanFtaFve measurement approach for 
the quality of AIS data. AIS data is ubiquitous, and many scienFfic contribuFons observe 
problems with the quality of that data. They oTen offer soluFons. However, hardly any work 
exists that quanFfies the extent of the quality problem. The main sources for AIS data, as well 
as some companies that develop informaFon products based on AIS data, provide data that is 
cleaned, processed, and, more oTen than not, parsed into specific Fme intervals. This 
‘cleaned’ data does not allow us to verify some of the important quality dimensions of AIS 
data. For our analysis, we have collected and recoded our own data to get access to completely 
unprocessed, truly real-Fme, data.  
 
Our data quality methodology generates a number of relevant insights. First of all, we find 
that the quality problems related to the AIS informaFon that comes directly from the ship’s 
systems are relaFvely limited. At the same Fme, we observe severe quality problems in the 
manoeuvring informaFon in the AIS data. We also analysed the ships’ adherence to the 
reporFng frequency requirements. We find that AIS messages are sent out more or less 
according to the AIS guidelines, but we could not confirm the absolute fulfilment of the 
requirement to send messages more frequently due to a course. We also find that manually 
entered data, such as desFnaFon, do not adhere to any prescribed standard.  
 
Finally, we idenFfy the use of default values in the AIS system as one of the main sources for 
data quality disturbances. These default values prevent empty data fields from occurring, but 
they do result, to a relaFvely high degree, in faulty or unusable entries in the data.  
 
Our work is relevant for the large volume of AIS data studies. As long as these studies use the 
locaFonal elements in the AIS messages, the data, and therefore the results of these studies 
is relaFvely reliable. As soon as other elements of the AIS data, such as speed, manoeuvring 
and rate of turn are used, more cauFon is advisable.  
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1. Introduction 
 

In recent years, studies involving tracking ships with data has taken enormous strides. The 
requirement for ships in internaFonal voyages above 300 gross tonnage (GT) to have an 
automated idenFficaFon system (AIS) present aboard ships has been formally discussed in the 
InternaFonal MariFme OrganizaFon (IMO) since 2000 and was adopted as part of Chapter V 
in the Safety of Life at Sea (SOLAS) convenFon in 2004. The performance standards for AIS 
equipment, such as the frequency of messages and the required content of staFc and dynamic 
informaFon, have been around since 1998. Much of the required technology was developed 
in the 1990s with the express aim to avoid collisions and improve navigaFonal safety (Yang et 
al., 2019). The data from this analogue technology is now ubiquitous, and is used extensively, 
by among others, mariFme researchers.  
 
The infrastructure to collect the AIS messages from ships has developed along two lines. AIS 
transponders, piggybacking on the relaFvely short-range VHF radio wave communicaFon, now 
has a range of up to 40 nauFcal miles. In addiFon, collecFve data sharing arrangements have 
developed, where everyone who collects data with an antenna can contribute to a data pool 
and obtain access to all other data. An example is AISHub (aishub.net), associated with the 
Vesselfinder plaeorm (www.vesselfinder.com). This AIS antenna network comes with a 
coverage restricFon because there are (coastal) areas of the world with very few or no 
antennae. The high seas are not covered at all.  
 
The second source of AIS data emerged from 2008 onwards, when an AIS satellite network 
was developed, and AIS data was also collected through satellites. This network aims to solve 
the coverage problem discussed above. An example is the German company Fleetmon 
(www.fleetmon.com, currently integraFng with MarineTraffic and Keplr), established in 2010 
and explicitly integrated satellite and ground staFon data. The extended coverage is illustrated 
in a map in Figure 1 below.  
 

 
Figure 1: AIS coverage map based on Fleetmon 
Source: fleetmon.com/global-vessel.coverage 

about:blank
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Due to this data ubiquity, it is unsurprising that the body of research based on AIS data has 
also grown fast. At the same Fme, pracFFoners, researchers and AIS data specialists have 
observed significant problems with the quality of AIS data. We also know that data volume 
and bandwidth challenges are impacFng the real-Fme nature of the data, and significant 
volumes of the data stream contain no data or zeroes (see for early analyses on this HaraF-
Mokhtari et al., 2007 and Qu et al, 2011 and, more recently, McFadden et al., 2019).  
 
What is relaFvely unknown, however, is what the magnitude of the quality problem for AIS 
data is. This paper aims to contribute two results to the current AIS body of literature. First, 
we aim to suggest a comprehensive measurement approach for AIS data quality. This will offer 
researchers and pracFFoners a more objecFve way to evaluate the AIS data they are working 
with. Second, we aim to provide actual data quality measurements for a specific set of AIS 
data we collected ourselves. This should contribute to the understanding that AIS data users 
have to record and jusFfy their data clean-up efforts, as well as that of pracFFoners who have 
developed real-world applicaFons that rely on AIS data.  

 
The remainder of this paper is organised as follows. We first briefly review the literature that 
addresses AIS data quality. Following this, we start by developing our data quality 
measurement methodology. As part of that methodology, we also provide a brief background 
on the technical nature of AIS data. ATer that, we present measurements on several data 
quality dimensions based on data specifically collected for this paper. We finish this paper with 
recommendaFons for users of AIS data and further research.  
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2. Literature on AIS data quality assessment 
 

We reviewed papers that explicitly address elements of AIS data quality in the last decade 
(since 2015). In our search, we used the key word AIS, in combinaFon with words that can be 
associated with data quality: just data quality, quality problems, but also, vulnerability, perils, 
(abnormal) data repair, false, errors, gaps, data integrity, data restoraFon, data reconstrucFon, 
data denoising, data pre-processing. We included one paper on anomaly detecFon (Wolsing 
et al 2021), because it is a review paper. Most of the Fme, these key words appeared in the 
Ftle of the paper. In a few cases, however, the abstract would also quickly reveal specific 
a;enFon to one or more AIS data quality aspects.  
 
Very early discussions on AIS data quality can be found in HaraF-Mokhtari et al (2007). This 
paper stands at the Fme of introducFon of AIS in the mariFme world, and evaluates the 
balance between AIS’ contribuFon to solving safety problems and AIS causing problems of its 
own. This paper does provide measurements of errors, for instance for navigaFon status: 
about 30% of the vessels displayed wrong informaFon, based on their data collecFon. Other 
early sources, such as Shelmerdine (2015) and Iphar et al (2015) elaborately classify quality 
problems but provide no analysis or measurement.  
 
We idenFfied some 24 papers that deal in some detail with data quality issues of AIS data, 
either by idenFfying sources for quality problems, or by measuring the magnitude of these 
problems. In our search, we focused on papers published in journals only. Some IEEE 
conference papers, book chapters and student theses that address AIS data quality are thus 
not considered in our overview below.  
 
Several of the papers provide a (usually brief) discussion on types of errors in AIS data (He et 
al. 2021a, He et al. 2021b, Lei et al. (2021), Yang et al. (2021), Lee et al. (2019), Chen et al. 
(2020, 2022), Zhang et al. (2022), Meyers et al. (2022), Mieczyńska & Czarnowski (2021), El 
Mekkaoui et al (2022): invalid data, errors, values missing, abnormal values, duplicate records, 
locaFonal outliers. Several papers focus on a specific data error: Lei et al. (2021) and 
Mieczyńska & Czarnowski (2021) focus on the MMSI nr, Yang et al. (2021) and Huang et al 
(2025) on desFnaFon data, Meyers et al. (2022) on staFc ship informaFon (length, beam, 
draught and type), Mekkaoui et al. (2022) on spaFal outliers, Zhao a et al. (2018) on accuracy 
of vessel tracks, and, finally, Lei et al (2021) as well as Serra-Sogas et al (2021) focus on 
coverage problems related to inland shipping and small recreaFonal craTs, respecFvely. In 
some cases, the data quality problems are a;ributed to the technological infrastructure and 
equipment: He et al. (2021b), Mieczynska & Czarnowski (2021), Androjna et al. (2021), or 
weather (Liang et al, 2024).  
 
As a soluFon, comparing the AIS data to some other data source is suggested: either visual 
inspecFon, radar, GPS, or aerial survey (He et al. (2021/1), Jaskolski et al. (2021), Serra-Sogas 
(2021)).  

 
The majority of papers discuss AIS data quality in order to set a context for their proposed 
soluFon: automated data cleaning, clustering, consistency verificaFon, trajectory 
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reconstrucFon, signal fusing and spliong, and interpolaFon. Emmens et al (2017) as well as 
Wolsing et al (2022) provide an overview of AIS data problems without offering new soluFons 
of their own. Strozyna et al (2020) present a generic data quality measurement approach, 
which they then apply to various open AIS sources. Their analysis shows considerable quality 
differences between sources, ranging from Marinetraffic to Fleetmon.  
 
A few papers provide an approach to actual measure data quality dimensions. Iphar et al 
(2015) provides a method, but no actual measures. Emmens et al (2017) also provide 
measures, on missing data and noise. Jaskolski et al (2021) provides some measures on 
posiFon inaccuracy, through experimental simulaFons. Kiersztyn et al (2024) provides some 
measures on missing values for ship idenFfiers (MMSI, name, callsign, and IMO nr). They find 
a combined score of 54% missing data. Meyers et al (2022) , assessing the staFc ship related 
elements in AIS messages (length, beam and so on), find significant missing data, but also 
observe that this raFo is declining over Fme.      
 
Our literature review reveals a broad consensus that AIS data has data quality problems. 
However, there is no consistent insight into the quanFtaFve aspects of data quality measures 
across the AIS data source. Even thought some papers make some effort to provide measures 
for the extent of the data quality problem they aim to address, a consistent overview is lacking. 
We do not know how o%en the MMSI number is missing or incorrect or how oTen locaFon 
data is irregular. We do know that almost all elements of the AIS data messages can be wrong 
(Mekkaoui et al., 2022). 
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3. Data quality model 
 

There is extensive literature on data quality assessment, data quality management and data 
quality management methodologies. We do not intend to contribute to this ongoing line of 
research, and therefore, we apply a standard data quality assessment approach to mariFme 
data. We follow the line of thinking of Zhang et al. (2019), who describe a data quality 
assessment in four steps:  

a) Data analysis: insight into the basic structure and content of the data 
b) Data quality requirements analysis: user expectations vis-à-vis data quality 
c) Identification of critical areas: identification of sources of the data to be analysed 
d) Process modelling: the approach to producing the data to be analysed 
e) Measurement of quality: the selection of the quality dimensions and corresponding 

metrics 

Zhang et al. (ibid) disFnguish between objecFve and subjecFve quality measurement. In this 
paper, we focus on objecFve (i.e. based on quanFtaFve metrics) quality measurement. We 
will expand on these five steps below.  

 
a. Data analysis 

Much material is available for a technical introducFon to AIS data. We refer the reader to the 
basic regulaFon in SOLAS chapter V regulaFon 19 and the related IMO resoluFons MSC.74(69) 
dd 12 May 1998 and A 29/Res.1106 dd 14 December 2015, which specify the technical details 
and communicaFon frequency requirements. 
 
An AIS system can generate 27 message types. In this paper, we will focus exclusively on the 
‘standard’ vessel posiFon report (messages type 1 and 3 combined with message type 5) and 
the data quality of these messages. We also focus on the commercial AIS technology and 
requirements (the so-called AIS Class A).  

A generic vessel posiFon report contains four main data clusters (IMO, 2015):  
1. Static data: the ship’s maritime mobile service identity (MMSI) and other vessel 

details; 
2. Dynamic data: ship’s position (GPS coordinated), position time stamp, course over 

ground, speed over ground, heading, navigational status and rate of turn; 
3. Voyage-related data: draught, hazardous cargo type, destination and estimated time 

of arrival (ETA), route plan (waypoints) 
4. Safety-related data: free text messages that can be sent to all receivers in range or a 

specific addressee.  

Such a report is an amalgamaFon of the main content of messages 1/3 and 5. Messages 1 and 
3 are locaFon messages. Message 3 is semanFcally the same as message 1 but is a response 
to an interrogaFon. These messages contain locaFon, course and speed. Message 5 is the 
voyage message, which contains informaFon such as desFnaFon, ETA and ship parFculars 
such as IMO number. The key to link the messages together is the MMSI number.  
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Messages 1 and 3 require broadcasFng depending on the navigaFonal status and speed. 
Anchored or moored ships do not have to send AIS messages as frequently as fast-moving 
ships. The specific message broadcasFng requirements are reproduced in Table 1.  

 
Table 1: Class A AIS equipment reporFng frequencies 

Navigational situation Reporting 
frequency 

Ship at anchor or moored and not moving faster than 3 knots 3 min 
Ship at anchor or moored and moving faster than 3 knots 10 s 
Ship 0-14 knots 10 s 
Ship 0-14 knots and changing course 3 1/3 s 
Ship 14-23 knots 6 s 
Ship 14-23 knots and changing course 2 s 
Ship >23 knots 2 s 
Ship >23 knots and changing course 2 s 

Source: IMO (2015); ‘min’ stands for minutes, and ‘s’ for seconds.  
 

Message 5, as well as other safety and voyage-related messages are communicated every 6 
minutes or as requested. As a result, there are (many) more messages 1 and 3 than 5.  
 
Observe that the data source for the first three data clusters differs. The sta6c data is fixed 
upon installaFon of the AIS equipment on board. However, a ship can exchange AIS 
equipment, giving the ship another MMSI number. The dynamic data will most oTen come 
from the navigaFonal system on the ship. This is essenFally the output from a sensor system 
where data is recorded automaFcally. The voyage-related data in message 5 is more oTen 
than not entered by the ship’s crew manually since this data is not automaFcally recorded and 
may require some esFmaFon or calculaFon (for instance the ETA). The regulaFons require this 
data to be updated every six minutes or amended as required (IMO, 2015, p. 6).    

 
b. Data quality requirements analysis  

To understand data requirements for AIS data, we have performed a literature review on 
papers using AIS data to assess data quality requirements. We carry out this review in two 
steps. First, we have reviewed all exisFng journal papers for a year (2021) to obtain an 
overview of applicaFons using AIS data. Second, we provide a more detailed discussion of the 
papers that consider AIS data quality specifically.  
 
As a first step, we idenFfied all papers on AIS data in 2021. All in all, by using the combinaFon 
of keywords ‘AIS’ and ‘mariFme’ and/or ‘shipping’, we found 116 individual papers. The 
reference list for these 116 papers is available separately. This list contains only journal papers, 
and no book chapters or publicly available conference presentaFons.  In our analysis, we are 
interested in the distribuFon of topics for these papers and how they deal with the quality of 
AIS data.  
 
We applied an inducFve themaFc coding approach (see, for instance, Rivas 2012) in two steps 
to sort the papers into applicaFon categories. Our first-level topics were:  

• AIS: papers on the usefulness of AIS data in maritime research,  
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• Biology: applications of AIS data to identify problems in marine biology, such as fishery 
monitoring,  

• Bunkering: using AIS data to calculate bunkering statistics,  
• Connectivity: network connectivity studies using AIS data,  
• Cyber problems: security of the AIS data infrastructure,  
• Data analytics: deriving ship classification from AIS satellite observations, 
• Data integration/compression: working with large (AIS) data streams or sets, 
• Engineering: signal conversion or integration 
• Maritime operations: using AIS data to calculate ETAs, destination predictions and so 

on,  
• Maritime Communication: performance analysis in maritime communication,  
• Navigation: risk analysis and safety improvements,  
• Oceanography: determining traffic densities or currents in the sea,  
• Traffic analysis: collision analysis, congestion analysis, route analysis and 

environmental impact, 

Of the 116 papers, the four most common themes are traffic analysis (62 papers), discussion 
on AIS data (13), data integraFon/compression (8) and mariFme operaFons (8).  
 
A further breakdown of the most common subthemes is provided in Table 2.  

 
Table 2: Subtheme breakdown  

Traffic analysis: 62 AIS: 13 
Trajectory prediction: 24 Data quality: 8 
Collision analysis: 10 Literature reviews: 3 
Environmental impact: 4 A further 2 individual topics 
Covid: 3  
Vessel behaviour patterns: 3  
Congestion: 2  
A further 16 individual topics  

 
The second-level label in Table 2 (leThand-side), ‘Trajectory predicFon’, includes the sub-
labels: trajectory reconstrucFon, route predicFon, and desFnaFon predicFon.  

 
From the combined the literature analysis in this step, we idenFfy the main requirement for 
the data quality of AIS data: the data should be suitable for performing some form of 
trajectory reconstrucFon analysis. This means that the basic combinaFon of ship 
idenFficaFon, locaFon data,  and navigaFon informaFon (speed, heading, course, desFnaFon, 
manoeuvring) should be trustworthy.  

 
c. Identification of the data source 

Generally, AIS data can be obtained from an AIS data hub. However, given that reporFng AIS 
data does require decoding, as described above, it is important to look for a source of data 
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that is as untampered as possible. We found such a source by collecFng our AIS data with a 
dedicated antenna.  
 
We collected our data by plugging directly into the Dutch AIS infrastructure of the NaFonal 
Digital Infrastructure Authority (in Dutch: RDI, Rijksdienst voor Digitale Infrastructuur). We 
obtained data from their receiver at Hook of Holland (just north of the Port of Ro;erdam) on 
three consecuFve days in May/June 2023. Under normal circumstances, this receiver has a 
recepFon range of about 70 kilometres. We used open-source soTware from Arundale 
(www.arundale.com)1 to capture the AIS messages 1, 3 and 5 payloads into a CSV file. 
Arundale appends the two parts of message 5 (message 5 requires two message spaces in the 
VHF channel) into one line in our CSV file, but then simply stores the undecoded message 
payloads. We decoded the message payload ourselves using the standard AIS documentaFon.  
 
We recognise that we conduct our analysis on a sample of all available AIS data. This is a 
sample is in Fme (about 48 hours) and in space (a circle of about 70 kilometres around the 
Port of Ro;erdam). On the other hand, this is a busy region, with a broad range of ships and 
mariFme acFvity. We consider it therefore a rich sample. A heatmap of our observaFons is 
provided in Figure 2.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Heat map of AIS message observaFons 31 May – 2 June 2023 
 
CollecFng data from the receiver gave us some 4 million (mln) messages over 50 hours. Since 
the period at the end of May/beginning of June had very fair weather, we captured many 
messages in a range wider than the usual 70-kilometre range of the antenna. Figure 2 shows 
the heatmap of our messages around Hook of Holland. Most of the messages are received in 
a rough circle around Ro;erdam. We also observe quite a lot of river traffic. There are strange 
observaFons as well. For instance, zeroes in the locaFon informaFon will result in observaFons 
that seem to be in London (Greenwich, in fact). ObservaFons in Hamburg or Bremen make 
sense, although they should have been out of range. ObservaFons in non-water areas in the 
middle of Germany, do not make sense. This visual inspecFon already confirms that the 
locaFon informaFon in AIS data cannot always be trusted 

 
 

1 https://arundaleais.github.io/docs/ais/ais_decoder_v3_downloads.html 

about:blank
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d. Process modelling 

From a technical perspecFve, the data transferred in the AIS messages is a so-called AIVDM / 
AIVDO data packet. This data packet is part of the NaFonal Marine Electronics AssociaFon 
(NMEA) standard. This packet is a ‘sentence’ that contains the main payload of a fixed bit 
length and some message parFculars before and aTer. Upon capturing the data with an 
antenna, addiFonal data, such as a Fmestamp, is added. A payload could look like this:  
 
13aNa@0P02PCTNRMdM;:W?wp2p22 
 
Such a string of characters is called an ASCII-encoded bit vector. This encoding means that 
each character, even the punctuaFon marks, represents six bits. The payload needs to be 
decoded in a parFcular way to obtain the full data string. For this, see any manual on dealing 
with AIVDM/AIVDO protocols. The resulFng six-bit strings then represent numbers. For each 
fixed-length field in the message structure, these numbers either have direct meaning (for 
instance, the MMSI number) or can be associated with specific informaFon for that field via 
another table (for instance, for navigaFonal status). Most AIS data pools will handle this 
decoding process before making the AIS data available.   
 
Since this decoding process already reveals data quality problems, for instance, when the 
payload does not allow complete decoding of the MMSI number, it is unclear how the various 
data collecFon pools for AIS handle these problems. If they simply delete all unsuccessful 
decoding cases, quanFtaFve quality measurement may be underesFmated.  

 
e. Measurement of quality 

The data quality measurement literature oTen points to BaFni et al. (2009), who proposed a 
comprehensive data quality (CDQ) methodology (see, for instance, Zhang et al., 2019 and 
Krasikov & Legner, 2023). BaFni et al. (ibid) also discuss the consensus concerning data quality 
dimensions. These are:  

1. Accuracy; this refers to the correctness or correspondence between recorded and 
real-world values. 

2. Completeness; this refers to the degree to which all required data elements are 
present.  

3. Consistency; this refers to (the absence of) violation of logic, semantics or other rules 
in the data.  

4. Timeliness; this relates to time-related dimensions of the data: currency describes 
how long ago the data was collected, ‘volatility’ describes the period the data is valid 
in the real world, and timeliness itself describes the duration between a real event and 
its recording with data.  

These four dimensions appear in many earlier works, for instance, Fox et al. (1994). We find, 
however, that these four dimensions do not capture the full extent of data quality for AIS data. 
We will resort to some other sources for addiFonal dimensions.  
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One useful source from the AIS data domain is Iphar et al (2015), who menFon 7 quality 
dimensions: accuracy, completeness, consistency, currentness (i.e. Fmeliness), precision, 
reliability, and integrity. Professional data management companies provide addiFonal views 
on data quality management. In a whitepaper from data management service provider 
Simplity (describing their Accurity data quality management plaeorm2), the dimensions 
‘uniqueness’ and ‘validity’ are added. The former represents the presence or absence of 
duplicates in the data, and the la;er describes the adherence to formats and data types. The 
dimension validity also captures the last three dimensions in Iphar et al (2015) - precision, 
reliability, and integrity. 5We will therefore work in the remainder with the following six 
quality dimensions: (1) accuracy, (2) completeness, (3) consistency, (4) Fmeliness, (5) 
uniqueness and (6) validity. We thus add uniqueness to the dimensions proposed by Iphar et 
al (2015), and capture three of their dimensions under the umbrella of ‘validity’. These six data 
quality dimensions are also found in other professional sources, such as Gawande (2022) from 
iCEDQ3. He proposes the raFo of inaccurate to total number of records as a generic measure.  
 
InteresFngly, the scienFfic literature does not discuss the problem of duplicates. BaFni (2009) 
only states that it affects all four quality dimensions. In our parFcular research problem, 
duplicates can be a significant problem since many users are drawing data from a pool filled 
with different ground staFons, some of which are close together. These will, therefore, capture 
largely the same set of ships. The soluFon could be as simple as eliminaFng all exact 
duplicates, but this raises the quesFon: Are there ‘near duplicates’ that should also be 
idenFfied and eliminated? We, therefore, consider duplicates, or more properly ‘uniqueness’ 
as an addiFonal dimension of our data quality model.  
 
Validity is a more pracFcal. To reduce the problem of measurement and standardisaFon, many 
professional data collectors, such as naFonal staFsFcs organisaFons, use codes and 
standardised data values. The standardisaFon of ship types in shipping, or the Harmonised 
System for goods classificaFon in trade, are examples in the mariFme and trade domains. This 
problem is relevant for our parFcular case since our data contains a subcluster of data that is 
entered manually. This data includes the data field ‘DesFnaFon’ in message 5. IMO (2015) 
contains only limited direcFons on what standard to use (in principle UN LOCODE), and thus, 
variaFon in this field seems unavoidable.  
 
In addiFon, we include the so-called default values under this quality dimension, ‘validity’. 
These are values that are automaFcally imputed (by the AIS equipment) if there is no data to 
report. Default values are usually ‘obviously wrong’ values. For speed, for instance, the default 
value in the AIS systems is 102,3 Kts. In quite some cases, however, this default value is a 
number that is read as a value in the recepFon infrastructure. In applicaFons such as ETA 
esFmaFon, this will result in wrong outcomes.  

 
  

 
2 https://www.accurity.ai/whitepaper/how-to-establish-a-data-quality-management-framework/ 
3 https://icedq.com/6-data-quality-dimensions 
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4. Objective AIS data quality measurement 
 

Above, we have idenFfied six data quality dimensions: accuracy, completeness, consistency, 
Fmeliness, uniqueness and validity. We can idenFfy simple tests to assess the magnitude of 
the problem in each dimension. Table 3 contains our research plan, with comments on the 
feasibility of the assessment. We have ordered the table based on the feasibility of the tests.  

 
Table 3: Research plan by data quality dimension 

Data quality 
dimension 

Quality test Feasibility comment 

Uniqueness Identify the number of 
duplicates. 

We will concentrate on exact 
duplicates. 

Completeness Identify complete 
messages based on the 
prescribed length of the 
payload. 

This amounts to counting the 
length of the message payload. 

Validity Assess the degree to 
which manual data uses 
standards and assess the use of 
default values. 

This amounts to counting the 
use of the specific default value 
occurrences, as well as – for the 
destination – cataloguing the most 
common destinations. We also 
present occurrence ratios. 

Timeliness Verify if the frequency 
requirements are met (cf Table 
1). 

Here, we look at the time 
interval between two consecutive 
messages, given the condition in 
Table 1 (speed). 

Consistency Assess a consistent 
sequence of recorded positions. 

This requires a consistent 
business rule that includes the 
information on speed and the 
calculation of the distance between 
two locations.  

Accuracy Verify recorded position 
with actual position. 

With our historical data, this is 
not possible. 

 
The content of Table 3 results in several observaFons:  
 
• We cannot investigate all dimensions of data quality equally. Accuracy is a dimension we 

have to exclude. There is some interesting literature on this already, however. See, for 
instance, Jankowski et al. (2021), who have compared AIS location data with radar 
observations and found considerable inconsistencies. Androjna et al (2021) study 
spoofing of AIS locations, which represents a deliberate attempt to distort the actual 
locations of a maritime object.  

• Some quality assessments are simple counting exercises: uniqueness, completeness, 
validity and timeliness,  

• Some quality assessments, such as consistency, require calculation based on the data and 
a business rule.  
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5. Data quality assessment  
 
In this secFon, we present our data quality measurements.  In Table 4 below, we first record 
our expectaFons for the findings.  

 
Table 4: AIS data quality research steps 

Data quality 
dimensions  

Research activity Comment Expected 
outcome 

Uniqueness We will present an 
inventory of duplicates. 

We will consider 
exact duplicates. 

Since we collect 
data from a single 
antenna, we do not 
expect to find 
duplicates.  

Completeness We will look at 
incomplete messages by 
assessing the length of the 
message payload and the 
possibility of linking message 
5 content to message 1/3 
content.  

The basic 
technical requirement is 
a payload of 168 bits. 

We expect the 
length of the payloads 
to follow the basic AIS 
technical requirements. 

Validity We will present an 
analysis of default values in all 
possible data fields 

We will present a 
specific analysis of the 
variation of destination 
values in message 5. 

Validity may vary 
with the type of data 
elements. 

We expect to 
find some default 
values. However, the 
occurrence should be 
minimal: <0,1% of the 
data.  

Timeliness We will assess the 
ships’ compliance level with 
the frequency requirements 
in the IMO (2015) resolution. 

We need to 
correct for ships entering 
and leaving our reception 
range, where not all 
messages may have been 
captured; we employ a 
geofencing approach for 
this. 

We expect all 
ships to comply with 
the frequency 
requirements of IMO. 

Consistency We will evaluate the 
logical consistency of 
subsequent AIS messages.  

We restrict 
ourselves to the linking of 
speed, locations, and 
distance.   

Given that this is 
a common application 
of AIS data and many 
solutions have been 
proposed, we expect to 
find considerable 
inconsistency. 

Accuracy We cannot verify the 
accuracy of the AIS data with 
outside data sources.  

 

We will present an 
analysis combining some 
aspects of accuracy in our 
consistency analysis. 

There is no 
research activity for this 
quality dimension. 

 
Note that consistency is a way to infer something about accuracy. For consistency, we a;empt 
to count the number of cases where our consistency test fails. While we do not know which 
data element was inaccurate in that case, these observaFons could also be recorded as an 
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idenFfied inaccuracy. To fully assess accuracy, we need addiFonal informaFon to verify the 
correctness of the data. Since we do not have access to other observaFons of ships, for 
instance, by radar or through visual observaFon, we cannot carry out such a test on accuracy. 
At the same Fme, our consistency test could be seen as a combined test on consistency and 
accuracy.  
 
As a final remark, the order in which we assess the different quality dimensions is relevant. 
CorrecFons we have to apply as a result of earlier quality checks (removing incomplete data, 
for instance), are included in later tests. 
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6. Quality measurement  
 

The number of observaFons in our data source can be found in Table 5.  
 

Table 5: Numbers of AIS messages 
Date Total number of 

messages 
Message type 1 Message type 3 Message type 5 

31 May 2023 823.127 640.702 153.693 28.732 
1 June 2023 2.088.215 1.640.969 373.938 73.308 
2 June 2023 1.137.269 901.515 194.985 40.769 
Total 4.048.611 3.183.186 722.616 142.809 

 
Observe that we have many more messages 1 and 3 than messages 5, as we have already 
menFoned above.  
 
Uniqueness 
For uniqueness, we look at the occurrence of duplicates. We do not expect to find any 
duplicates. Looking at the informaFon in the payload, we can idenFfy 34.868 (0,89%) exact 
duplicates for messages 1 and 3 and 139.757 (97,9%) for message 5.  
 
We thus observe that even for our data collecFon with a single antenna, we find almost 1% 
duplicates. It is extra strange that there are duplicates since the AIS system contains a repeat 
indicator in the messages, which should prevent an exact duplicate of the message if it is sent 
out mulFple Fmes. However, the occurrence can sFll be considered to be relaFvely low. 
 
The score for message 5 is a different story. Here, we find many duplicates. Since this message 
contains much relaFvely unchanging voyage informaFon, this could sFll make sense: 
desFnaFon and ETA do not oTen change during a voyage. Only if the ship enters a port will 
the ETA be adjusted. At the same Fme, we are observing ships around the Port of Ro;erdam, 
where we expect ships to at least make navigaFonal adjustments because of the traffic they 
will encounter. So, a duplicate percentage of 98% is very high. We ended up with just 3.052 
unique, or usable, messages of type 5 out of 142.809. Note that this has repercussions for any 
analysis that a;empts to verify desFnaFon or ETA predicFon in the data based on some 
algorithm. While the data for message 5 seems abundant, its real staFsFcal informaFonal 
content is limited if more than 95% of this data consists of duplicates.   

  
Completeness 
Under the completeness dimension, we look at missing informaFon. First, we consider the 
payload. All messages have a prescribed length. For messages 1 and 3, this is 168 bits. For 
message 5, this is more complicated, and we will explain this in more detail below.  
 
Reviewing the payload length for messages 1 and 3, one can infer that a message may contain 
an error if the standard length is not found. In our 3,9 mln messages, we find 27 incomplete 
payloads and 48 that contain characters that cannot be decoded. This amount of incomplete 
and incorrect payloads is minor (<0,001%). We have to remove these few observaFons from 
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our dataset since we cannot correctly decode these messages. All other payloads in messages 
1 and 3 have the prescribed length of 168 bits, which aligns with expectaFons (Table 4).  
 
For message 5, the length of the payload varies. It should be 424 bits, but 426 bits is the 
dominant length in our data set. Part of the reason is that this message contains manually 
entered data, among which is the ship’s desFnaFon. This desFnaFon needs to be typed in by 
a navigaFon officer on the bridge, which may result in differences in the text string. The 
difference in payload length is foreseen in the IMO documentaFon, where most decoding 
manuals include statements such as ‘Robust decoders should ignore trailing garbage and deal 
gracefully with a slightly truncated desFnaFon field’ (Raymond, 2023). If we count our 
message 5 with shorter length, we idenFfy 8 incomplete payloads on a total of 3.052 unique 
messages (0,002%). This we also consider to be minor.   
 
Another way of looking at completeness is to observe our data content for all ships indexed 
by MMSI. Our data set has 4.182 unique MMSIs. Of these, 2.040 do not have a type 5 message: 
we only have message types 1 and 3 for these MMSIs. For these 2.040 ships, therefore, we do 
not have more informaFon than the MMSI: no IMO number, no type informaFon, no 
desFnaFon or ETA.  Of course, addiFonal informaFon on ship type could be gathered through 
an outside source, such as ship register informaFon. However, few academics have direct 
access to ship register data. There is a group of 602 MMSIs for which we have a single type 5 
message and 1.540 MMSIs for which we have mulFple type 5 messages.  
 
We do not find many ‘empty’ fields in the data, due to the AIS system design: message 
payloads with a fixed length and empty fields are ‘filled in’ by the equipment, either with 
zeroes or default values. This is a feature of the robust design of the AIS system. In several 
cases, zero values have meaning: for heading, speed and course over ground. Also, default 
values may be numeric, even though they do not have ‘meaning’. We look at the occurrence 
of the default values under the data quality dimension ‘validity'.  

 
Validity 
For validity, we first look at the use of default values. The AIS system has many default values 
to make it robust for broadcasFng at sea, as well as for adaptaFons and future development. 
In addiFon, the AIS system has reserved values for future use. The current most common 
values, for instance, for naviga6on status are: 0 (underway using engine) and 1 (at anchor), as 
well as 5 (moored), 7 (fishing) and 8 (sailing). AddiFonal there is: 9 = ‘reserved for future 
amendment of navigaFonal status for ships carrying DG, HS, or MP, or IMO hazard or pollutant 
category C (HSC)’, 10 = ‘reserved for future amendment of navigaFonal status for ships 
carrying DG, HS or MP, or IMO hazard or pollutant category A (WIG)’; 11-14 = ‘reserved for 
regional or future use’, 15 = ‘ undefined (default)’.  
 
We report the number of messages that use addiFonal and default values for navigaFon status 
in Table 6.  
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Table 6: Message count default values 
Navigation status Number of messages Occurrence  
9 23 0,00% 
10 143 0,00% 
11-14 2.072 0,05% 
15 193.396 4,9% 

The occurrence is based on the original size of our data set 
 
While the observaFons for statuses 9, 10, and 11-14 are again low, the navigaFonal status 15 
(undefined) is used substanFally. If only a single message is available, it is not clear what these 
ships are engaged in.  
 
The AIS manual shows that speed over ground has a default value of 102,3. This number is 
not a feasible speed for any ship. It is a number, however, and if researchers are not paying 
a;enFon, it will end up in average or maximum speed calculaFons. At the very least, this will 
make average speed calculaFons unreliable. We found this default value in 14.840, or 0,4%, 
of the messages.  
 
In Table 7, we report a complete overview of the default values in the AIS messages 1/3 and 
5. 

Table 7: Overview of default values and message counts 
Message field Message Default 

value 
Number of 

messages 
Percentage 

of messages 
Rate of Turn 1&3 128 1.830.488 47,3% 
Speed over 

Ground 
1&3 102,3 14.840 0,4% 

Longitude 1&3 181 14.638 0,4% 
Latitude 1&3 91 14.635 0,4% 
Course over 

Ground 
1&3 3600 690.175 17,8% 

True Heading 1&3 511 1.839.892 47,5% 
Maneuver 

Indicator 
1&3 0 2.608.288 67,4% 

Navigational 
Status 

1&3 various 195.634 5,0% 

Ship Type 5 various 90 3,0% 
ETA month 5 0 &15 578 19,0% 
ETA day 5 0 577 19,0% 
ETA hour 5 24 & 31 384 12,6% 
ETA minute 5 60 & 63 383 12,6% 

Percentages are based, for the messages 1/3 on 3.905.802 and for message 5 on 3.052 total 
number of messages.  
 
Note that there are wildly different scores, from very low percentages to staggeringly high 
percentages. The highest percentage is obtained for the Maneuver Indicator. The value 
opFons here are: 0 (default), 1 (not engaged in special maneuver) and 2 (engaged in special 
maneuver). So, the transponder should send out value 1 most of the Fme. There is apparently 
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no genuine interest in this indicator showing the correct informaFon. The actual data received 
is ‘wrong’ two-thirds of the Fme.   
 
The variables of rate of turn, course over ground, and true heading are all navigaFonal 
informaFon fields in messages 1 and 3. One would expect these to be filled from the ship’s 
systems. We interpret the small error percentages as a confirmaFon of this. SFll, an esFmate 
of 0,4% applied to some 100.000 ships in the world merchant fleet indicates that several 
hundred ships are consistently sending out wrong locaFon and speed informaFon.  
 
Finally, note the considerable number of messages (seen against the much smaller volume of 
unique type 5 messages) in which the ETA Fme stamp contains default values. The inaccuracy 
for month and day informaFon is higher than for hour and minute informaFon. Given the 
importance of ETA informaFon for other parFes, such as port authoriFes and agents, using 
default values in ETA’s is worrying. This use of default values confirms the general lack of 
quality in ETA data from AIS that we have observed elsewhere (Veenstra & Harmelink, 2021).  
 
As part of our analysis of data validity, we look at the level of standardizaFon of the desFnaFon 
field in type 5 messages. The desFnaFon is a free text field of 20 posiFons, so some variety is 
expected. The AIS guidelines say that UN/LOCODE and ERI terminal codes should be used4 for 
the desFnaFon field. We know that manual data entry results in data quality problems 
(Counsell et al., 2007) 
 
Based on 3.052 unique messages, we present the desFnaFon values with the highest 
frequency. Note that we collected messages more or less in a 75-150 km radius around 
Ro;erdam. Therefore, a considerable reference to the Port of Ro;erdam as a desFnaFon is 
expected. Note further that, the 20-character space is someFmes filled with a default 
character, decoded as ‘@’.  
 
Note that the consequence of a free text field and manual entry is that the desFnaFon 
informaFon in AIS systems is highly varied. The variaFon is apparent from Table 8: nobody 
apparently uses the ERI terminal coding standard, even though a specific port or terminal 
desFnaFon is added, in many cases in Dutch. The occurrences reported in Table 8 represent 
about one-third of the available message type 5 data (3.052 unique messages).  
 
In addiFon, due to the way the AIS system works with default values, which may or may not 
be decoded, the desFnaFon may contain spaces, the ’@’-character, or other text, which makes 
this data hard to work with. The locaFon references are imprecise and may very well be 
inaccurate. We observed, for instance, 'NLRTM<>GBHRW’ and ‘ROTT HARW VV@@@@@’ 
(or Ro;erdam to and from Harwich) for the ferries in the Port of Ro;erdam in our data. These 
examples are not a desFnaFon but a route. If these ships are sailing this leg daily, it is perhaps 
understandable that they enter the informaFon this way, but it is not compliant with the IMO 

 
4 The ERI (Electronic Reporting International) is a maritime based coding system with a quite accurate 

reference system for terminal locations, which includes fairway indicators, terminal identifiers as well as 
hectometer references.  
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AIS guidelines. The consequence of this quality problem with desFnaFon data is a 
considerable amount of literature on desFnaFon predicFon (see, e.g., Yang et al., 2021).            
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Table 8: DesFnaFon value varieFes 
Destination value Count Cumulative 

count 
Comment 

Rotterdam@..@ 349 349 Different variants, with and without 
spaces 

‘@@@@@@@@@@@-
@@@@@@@@@’ 

241 590 The @ character results if the field 
is empty or filled with zeroes 

NLRTM@...@ 169 759 This is the LOCODE for Rotterdam 
NL RTM@...@ 85 844  
BEANR 33 877 This is the LOCODE for Antwerp 
ANTWERPEN@...@ 22 899  
ANTWERP 18 917  
DORDRECHT@..@ 18 935  
ROTTERDAM 

BOTLEK@@@@ 
16 951 This is a reference to the port + 

terminal (no locode was used,  however) 
DINTELHAVEN@..@ 16 967  
VLAARDINGEN@..@ 15 982  
ROTTERDAM PRINSES 

AM 
15 997  

BE ANR 15 1.013  
SCHEVENINGEN 13 1.026  
AMSTERDAM 13 1.039  
ROTTERDAM 3E 

PETROHA 
12 1.051  

ROTTERDAM 2E 
PETROHA 

11 1.062  

EUROPOORT@..@ 10 1.072  
‘@..@’ indicates that the data field was filled up to 20 characters with either empty spaces or 
zeroes.  

 
 

Timeliness 
The AIS regulaFon has requirements for the frequency of messages; see Table 1. This can be 
measures by looking at the Fme intervals between consecuFve messages, given the trigger 
‘speed’ in the first message. Since we have observaFons from a single antenna, we want to 
control for radio frequency distorFon that may exist at the boundary of our recepFon area. 
Incidental messages may be lost due to poor recepFon, which will influence our calculaFons. 
To manage this, we drew a circular geofence around our antenna in Hook of Holland (see 
Figure 3). Within this circle, we minimise the influence of the distorFon.  
 
We need to look at mulFple messages from the same ships. In our data set, we find 4.177 
unique MMSIs. Of these, 262 and 283 ships have empty or a single message of type 1 and 3, 
respecFvely. For the other cases, we look at the Fme interval between all occurring 
combinaFons of two messages.  
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Figure 3: Observed messages and geofence circle 

 
In Table 9, we provide various measures for the Fmeliness analysis across message mulFples 
and ships. From previous research (Veenstra & Harmelink, 2021), we know there may be 
incidental but significant outliers that might impact average Fme interval calculaFons. 
Therefore, we also calculated median Fme intervals. Finally, we calculate a message frequency 
indicator not based on a summary staFsFc: the number of messages between 0 and 20 
seconds. 
 
Note from the message numbers in Table 9 (columns 3 and 4) that compliance with the Fme 
interval guidelines is rather poor. Observe specifically the cases of changing course at relaFvely 
low speeds (0-14 knots and 14-23 knots). These are typically speeds for huge ships (13-14 kts 
is the standard tankers and bulk carriers; 18 kts is a fairly standard speed for container vessels) 
and ships entering ports.  
 
A few of the observed average frequencies are close to the prescribed values. This holds for 
the 3-minute interval for ships moored or anchored and for ships sailing faster than 23 knots. 
Based on the median Fme intervals, even more observed Fme intervals align with the IMO 
guidelines.  
 
There are also deviaFons, however. For ships anchored, we observe a considerable difference 
between the average and the median value. The average here is an average of short and longer 
Fme intervals. In most cases, the ships communicate more frequently than required. This 
could result from a relaFvely large volume of type 3 messages, which result from acFve 
interrogaFon from other ships. This is to be expected, in an anchorage area. We also observe 
that the prescribed frequency for ships sailing between 0 and 14 knots has a low overall 
correctness percentage (38,9% and 7,2% when changing course).  
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Table 9: Timeliness results 
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Anchor/moored < 3 
knots 

3 m 70.210 11.526 85,9% 0,2 k 3:43 0:19 53,8% 

Anchor/moored > 3 
knots 

10 s 10.688 5.435 66,3% 7,4 k 1:25 0:09 79,0% 

Ship 0-14 knots 10 s 627.165 986.329 38,9% 0,4 k 1:19 0:11 58,6% 

Ship 0-14 knots 
changing course 

3 1/3 s 140.396 1.822.009 7,2% 4,3 k 
(-0,140) 

1:24 0:11 65,0% 

Ship 14-23 knots 6 s 8.178 4.739 63,3% 16,2 k 0:12 0:06 86,9% 

Ship 14-23 knots 
changing course 

2 s 17.303 74.377 18,9% 17,5 k 
(4,136) 

1:06 0:06 84,3% 

Ship >23 knots 2 s 2.545 677 79,0% 27,0 k 0:02 0:02 91,7% 

Ship >23 knots; 
changing course 

2 s 25.603 26.535 49,1% 27,0 k 
(8,657) 

0:16 s 0:03 92,9% 

‘s’ and ‘ss’ stand for second, ‘m’ stands for a minute, and ‘k’ stands for knots.  
 
Another observaFon is that the increased message frequency for ships ‘changing course’ is 
not found in the data. Instead, ships changing course will send messages less frequently 
(based on the calculated average Fme intervals). We wonder if this is due to the poor data on 
the maneuver indicator in the type 1 and 3 messages, which seems to be unused. On the other 
hand, our indicator that looks at the number of messages within 20 seconds does find a slight 
increase due to the ship changing course for two of the three-speed categories. For speed 
between 14-23 knots, however, this indicator shows fewer messages when changing course. 
This is non-compliant with AIS standards.  
 
Overall, many ships are broadly compliant with the frequency requirements, but there is also 
considerable non-compliance in message frequency. In addiFon, we draw a;enFon to the 
frequency requirements for the ship’s changing course. Here, we observe structural non-
compliance with the formal frequency requirements.      
 
Consistency and accuracy 
We have already indicated that we cannot perform a full accuracy test on our data. We can, 
however, observe inaccuracy that results from inconsistent observaFons. This is a ma;er of 
degree: if we find relaFvely minor deviaFons in locaFon, we take these to result from 
inconsistency in the recording of locaFons of speed. However, if these deviaFons become 
large, this is no longer an inconsistency but a data inaccuracy. In other words, if the ship makes 
big, unexplainable jumps, this is more of an accuracy problem than a consistency problem.  
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To perform the consistency check on our data, we need consecuFve messages with valid speed 
and locaFon data. We also take into account a Fmeliness threshold of 60 seconds: messages 
should not be more than 1 minute apart. For ships anchored, this means we are stricter than 
the regulaFons. In all other cases, we are more lenient. We use the well-known Haversine 
formula to calculate distances between two geolocaFons at sea.  
 
We compare our calculated distance between two points with the sailing distance based on 
the first locaFon and speed.  We do this only for messages that are enFrely within our 
geofence (see Figure 3). This results in 176.431 message sequences we can work with, where 
the sequences can be as short as 2 messages or as long as 26.483 messages. This la;er case 
corresponds to a ship that is sailing relaFvely fast through our geofence area and sends out 
messages every 3 seconds or so.  
 
As was menFoned earlier, we combine the data quality dimensions for consistency and 
accuracy in our test. We evaluate the results as follows:  

• Differences between the two distances below 10 m: consistent and accurate, 
• Differences between 10 and 35 m: data is not consistent, but still accurate, 
• Differences above 35 m: data is inaccurate. 

The 10-metre criterion is based on the generic inaccuracy of posiFoning equipment. The 35-
metre criterion is the mean value of all our difference measures above 10 metres + 10%.  

Our measures are reported in Table 10.  
 

Table 10: consistency and accuracy results 
Distance differences Message count Percentage 

(%) 
Below 10 m 4.102.207 97,4 
Between 10 m and 35 m 96.449 2,3 
Above 35 m 11.665 0,3 
  ‘m’ stands for metre 

 
We observe some degree of inconsistency in the data. Nevertheless, at 2,3%, we do not 
consider this very significant. This result is good news for all the colleagues who work with the 
locaFon data in AIS. ConsecuFve messages are largely consistent regarding the relaFonship 
between locaFon, distance, and speed. This is in line with our results reported under validity.  
 
We have also looked at the consistent performance of individual ships. We find that a median 
value of 2 inconsistencies is found per ship. There are also strange occurrences where this 
triplet of data (locaFon, speed and distance) is far off the mark. The relaFve importance of 
this problem is small, but that does not mean it does not occur. In our 4 mln messages, we 
have close to 12.000 cases in which the data shows unexpected outcomes. The reasons could 
be various: the speed data is incorrect, the locaFon informaFon is incorrect, or both. And, 
since we found the median value of inaccuracies per ship equals 2, every ship occasionally has 
this type of disturbance in its data.  
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7. Concluding remarks 
 

In this paper, we have presented an approach to quan6fy data quality problems for AIS data. 
We have collected our own AIS data to present data quality measures on the rawest, purest, 
possible data set. While this gives us much control over the data wrangling, we acknowledge 
that our data is only a small and regionally restricted sample. We present a structured data 
quality measurement methodology to obtain quanFtaFve insights into AIS data quality. We 
have used a data quality measurement framework with six dimensions: uniqueness, 
completeness, validity, Fmeliness, consistency and accuracy 
 
We will confront our iniFal expectaFons with the outcomes we have presented in Table 4. 

 
Table 11: AIS data quality assessment outcome 

Data quality 
dimensions  

Expected outcome Research results 

Uniqueness Since we collect data 
from a single antenna, 
we do not expect to find 
duplicates.  

We find < 1% duplicates in messages 1 and 3, and 97,9% 
duplicates in message 5. The latter message contains a 
lot of static information, such as destination and ETA.  

Completeness We expect the length of 
the payloads to follow 
the basic AIS technical 
requirements. 

We find very minor numbers of incomplete messages of 
types 1 and 3, as well as 5: < 0,001%. We find that we 
have 4,182 unique MMSIs, of which 2.040 cases without 
type 5 messages (48,7%), 602 cases with only 1 type 5 
message (14,4%) and 1.540 cases with multiple type 5 
messages (36,8%).   

Validity We expect to find some 
default values. However, 
the occurrence should be 
minimal: <0,1% of the 
data.  

We find that (illogical or impossible) default values occur 
very frequently. For full results, see Table 7. Highest 
percentages are found for Rate of Turn (default 128 in 
47,3% of cases), True Heading (default 511; 47,5%) and 
Navigation Status (default 0; 67,4%). In message 5, ETA 
information may contain default values in up to 19% of 
the data.  
We also observe significant non-standard entries in 
manual field such as destination. Here non-compliance 
with prescribed standards is almost 100%.  

Timeliness We expect all ships to 
comply with the 
frequency requirements 
of IMO. 

Here we find mixed results: Ships anchored and sailing 
certain speeds send out messages according to the AIS 
standard. However, the prescribed increase in reporting 
is not observed for any of the three speed categories. (In 
fact, in one of them, the frequency decreases).  

Consistency Given that this is a 
common application of 
AIS data and many 
solutions have been 
proposed, we expect to 
find considerable 
inconsistency. 

According to our thresholds, we find considerable 
consistency in the combination of locations and speed: 
97,3%. We do find that every ship in our data set has one 
or more consistency violations, however.  

Accuracy There is no research 
activity for this quality 
dimension. 

We did not present results for this criterion.  
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In summary, for the dimensions of uniqueness and completeness, the problems are relaFvely 
small. We a;ribute this to the AIS system design, which prevents missing data but introduces 
a considerable amount of default values and our data collecFon approach through a single 
antenna (albeit a very large one).  
 
This has repercussions for our third measure, validity, however. Here, we find that default 
values in the data are a persistent problem that varies considerably with the specific data 
element. Most dynamic data originaFng from ship’s systems have relaFvely small default data 
problems (smaller than 1%). However, these could sFll potenFally significantly impact 
research results (e.g., calculated average speeds). Manoeuvring informaFon, such as the 
special manoeuvre indicator and rate of turn, exhibit considerable default data problems. 
Here, we observe 67% and 47% default values in our data, which makes the data 
uninformaFve on these data elements. We also observe the use of default data in reporFng 
ETA informaFon in at least 12-19% of the date structure of ETAs. Finally, the free text value 
opFon in the desFnaFon field results in a wide variety of input and li;le adherence to 
standards.  
 
Under 2meliness, we observe that most ships try to adhere to the message frequency 
standards. On the other hand, our analysis shows that ships are largely non-compliant with 
the frequency requirements for ships changing course. We conjecture that this may be linked 
to the poor quality of other manoeuvring related data in the AIS messages, such as the Rate 
of Turn and the Manoeuvre Indicator.  
 
For our fiTh dimension, consistency, we find that the data is largely consistent but that every 
single ship in our sample has some cases of inconsistent or even inaccurate data. We did not 
present results for the sixth measure, accuracy.  
 
Our overall conclusion is that the AIS system generates data that is useful for analysis and 
pracFcal applicaFon, but the system’s design, and a lack of supervision on the quality of the 
data, result in potenFal flaws. System design issues relate to the broad use of default values 
and the opFon to allow free text data entry for specific voyage-related data fields. In addiFon, 
we find considerable problems with the informaFon that AIS data conveys about the ships’ 
manoeuvring. Many data elements related to this (manoeuvre indicator, rate of turn) are 
unreliable, and the requirement to increase the frequency of messages for ships changing 
course also suffers. This is a serious problem for a system that was designed to support the 
safety of navigaFon.   
 
Our conclusions support much of our colleagues’ route reconstrucFon, desFnaFon predicFon 
and ETA calculaFon work. We hope that our quanFtaFve assessment of data quality issues 
assists in a more detailed discussion of data clean-up acFviFes in future papers. In addiFon, 
our analysis also points to concerns about the use of AIS data as a basis for VTS systems. There 
are severe inaccuracies, especially in the manoeuvring informaFon in the data, that need to 
be addressed to obtain reliable traffic situaFonal awareness.  
 
For further research, we recommend that our, or a similar, data quality program is carried out 
in the AIS data pools that exist in the world and reported on transparently. Many researchers 
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and pracFFoners obtain their data from these sources, and they should expect a data quality 
report that helps them assess the reliability of their data. Finally, we advise the InternaFonal 
MariFme OrganizaFon (IMO) and the InternaFonal AssociaFon of Marine Aids to NavigaFon 
and Lighthouse AuthoriFes (IALA) to consider updaFng the AIS specificaFons to miFgate risks 
related to data quality found in this research. 
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